Components

3 Twig Components
5 Render Count
2 ms Render Time
90.0 MiB Memory Usage

Components

Name Metadata Render Count Render Time
ProductState
"App\Twig\Components\ProductState"
components/ProductState.html.twig
2 0.51ms
ProductMostRecent
"App\Twig\Components\ProductMostRecent"
components/ProductMostRecent.html.twig
2 1.40ms
ProductType
"App\Twig\Components\ProductType"
components/ProductType.html.twig
1 0.22ms

Render calls

ProductState App\Twig\Components\ProductState 90.0 MiB 0.32 ms
Input props
[
  "product" => App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  "showFullLabel" => "true"
]
Attributes
[
  "showFullLabel" => "true"
]
Component
App\Twig\Components\ProductState {#92924
  +product: App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  +appearance: "state-active"
  +labels: [
    "Active"
  ]
  -stateAttributeCode: "state"
  -localeContext: Sylius\Component\Locale\Context\CompositeLocaleContext {#1833 …}
}
ProductType App\Twig\Components\ProductType 90.0 MiB 0.22 ms
Input props
[
  "product" => App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
]
Attributes
[]
Component
App\Twig\Components\ProductType {#93102
  +product: App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  +label: "Standard"
  -typeAttributeCode: "type"
  -localeContext: Sylius\Component\Locale\Context\CompositeLocaleContext {#1833 …}
}
ProductMostRecent App\Twig\Components\ProductMostRecent 90.0 MiB 0.66 ms
Input props
[
  "product" => App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
]
Attributes
[]
Component
App\Twig\Components\ProductMostRecent {#93169
  +product: App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  +label: "Most Recent"
  +icon: "check-xs"
  -mostRecentAttributeCode: "most_recent"
  -localeContext: Sylius\Component\Locale\Context\CompositeLocaleContext {#1833 …}
}
ProductState App\Twig\Components\ProductState 90.0 MiB 0.19 ms
Input props
[
  "product" => App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  "showFullLabel" => "true"
]
Attributes
[
  "showFullLabel" => "true"
]
Component
App\Twig\Components\ProductState {#100100
  +product: App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  +appearance: "state-active"
  +labels: [
    "Active"
  ]
  -stateAttributeCode: "state"
  -localeContext: Sylius\Component\Locale\Context\CompositeLocaleContext {#1833 …}
}
ProductMostRecent App\Twig\Components\ProductMostRecent 90.0 MiB 0.74 ms
Input props
[
  "product" => App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
]
Attributes
[]
Component
App\Twig\Components\ProductMostRecent {#100184
  +product: App\Entity\Product\Product {#7310
    #id: 12915
    #code: "IEEE00010959"
    #attributes: Doctrine\ORM\PersistentCollection {#7700 …}
    #variants: Doctrine\ORM\PersistentCollection {#7743 …}
    #options: Doctrine\ORM\PersistentCollection {#7915 …}
    #associations: Doctrine\ORM\PersistentCollection {#7899 …}
    #createdAt: DateTime @1751040742 {#7274
      date: 2025-06-27 18:12:22.0 Europe/Paris (+02:00)
    }
    #updatedAt: DateTime @1754608621 {#7322
      date: 2025-08-08 01:17:01.0 Europe/Paris (+02:00)
    }
    #enabled: true
    #translations: Doctrine\ORM\PersistentCollection {#7921 …}
    #translationsCache: [
      "en_US" => App\Entity\Product\ProductTranslation {#7920
        #locale: "en_US"
        #translatable: App\Entity\Product\Product {#7310}
        #id: 46669
        #name: "IEEE 3187:2024"
        #slug: "ieee-3187-2024-ieee00010959-244573"
        #description: """
          New IEEE Standard - Active - Draft.<br />\n
          The development and application of federated machine learning are facing the critical challenges about how to balance the tradeoff among privacy, security, performance, and efficiency, how to realize supervision covering the whole life cycle and how to get the explainable results. Then trustworthy federated machine learning is proposed to solve the above problem. In this standard, a general view on framework for trustworthy federated machine learning is provided in four parts: a principle in trustworthy federated machine learning, requirements from the perspective of different principles and different federated machine learning participants, and methods to realize trustworthy federated machine learning. It also provides some guidance on how trustworthy federated machine learning is used in various scenarios.<br />\n
          \t\t\t\t<br />\n
          This guide provides a reference framework for trustworthy Federated Machine Learning. The document provides guidance with respect to provable security for data and models, optimized model utility, controllable communication and computational complexity, explainable decision making and supervised processes. The guide describes three main aspects: 1) principles for trustworthy Federated Machine Learning, 2) requirements for different roles in trustworthy Federated Machine Learning, and 3) techniques to realize trustworthy Federated Machine Learning.<br />\n
          The purpose of this guide is to provide credible, practical and controllable solution guidance for Federated Machine Learning and other privacy computing applications.
          """
        #metaKeywords: null
        #metaDescription: null
        #shortDescription: "IEEE Draft Guide for Framework for Trustworthy Federated Machine Learning"
        -notes: "Active"
      }
    ]
    #currentLocale: "en_US"
    #currentTranslation: null
    #fallbackLocale: "en_US"
    #variantSelectionMethod: "match"
    #productTaxons: Doctrine\ORM\PersistentCollection {#7533 …}
    #channels: Doctrine\ORM\PersistentCollection {#7627 …}
    #mainTaxon: Proxies\__CG__\App\Entity\Taxonomy\Taxon {#7311 …}
    #reviews: Doctrine\ORM\PersistentCollection {#7612 …}
    #averageRating: 0.0
    #images: Doctrine\ORM\PersistentCollection {#7644 …}
    -supplier: Proxies\__CG__\App\Entity\Supplier\Supplier {#7325 …}
    -subscriptionCollections: Doctrine\ORM\PersistentCollection {#7389 …}
    -apiLastModifiedAt: DateTime @1754517600 {#7317
      date: 2025-08-07 00:00:00.0 Europe/Paris (+02:00)
    }
    -lastUpdatedAt: DateTime @1737932400 {#7292
      date: 2025-01-27 00:00:00.0 Europe/Paris (+01:00)
    }
    -author: ""
    -publishedAt: DateTime @1734562800 {#7318
      date: 2024-12-19 00:00:00.0 Europe/Paris (+01:00)
    }
    -releasedAt: null
    -confirmedAt: null
    -canceledAt: null
    -edition: null
    -coreDocument: "3187"
    -bookCollection: ""
    -pageCount: 50
    -documents: Doctrine\ORM\PersistentCollection {#7464 …}
    -favorites: Doctrine\ORM\PersistentCollection {#7499 …}
  }
  +label: "Most Recent"
  +icon: "check-xs"
  -mostRecentAttributeCode: "most_recent"
  -localeContext: Sylius\Component\Locale\Context\CompositeLocaleContext {#1833 …}
}